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Abstract

Persistence in weather forecasting is used to describe runs of sev-
eral days with similar weather characteristics. This general notion of
persistence is extended to long term records of climate by examining
the scaling properties of the range, maximum minus minimum, of the
integral or sum of observed or calculated variable. The values of per-
sistence, P, are limited by existence considerations to -1 < P < 1.
For P = 0, the increments making up the sum are uncorrelated, in-
dependent variables. Values of P near unity represent a tendency for
long runs of similar values. Observed global average annual tempera-
ture records exhibit strong positive persistence even when linear trend
is removed. A hundred year CCM run (CCM-1) shows vanishing per-
sistence perhaps indicating that the real oceans give rise to runs of
several years or decades with similar climate characteristics while the
model ocean fixed by seasonal means does not.
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1 INTRODUCTION

Questions about predictability of climate focus attention on the phe-

nomenon of persistence. In meteorology, the term "persistence" is used to

describe runs of several days with similar weather characteristics. Persistence

can aid weather forecasting: Under some circumstances today's weather can

be used to predict tomorrow's. In the case of high frequency weather, per-

sistence is associated with the large scale organized motion within the at-

mosphere, the nature of which is determined in large measure by the earth's

rotation. For example, the air mass comprising a high pressure system, with

anticyclonic circulation, has similar characteristics over the area it covers and

weather conditions can persist for days as the system moves over a locality.

Such a system may take several days to pass over a given location in summer,

while in winter it moves more rapidly. Therefore, in general, predictive skill

is greater in summer than in winter.

Does climate show persistence? Are there runs lasting several years

or more in which similar conditions persist that are different from "mean"

conditions? Does climate exhibit long term memory so that long term cor-

relations in patterns of climate exist? Are long runs of drought recorded in

Biblical times and in today's California examples of persistence in climate?

If climate does demonstrate these long term correlations in the form

of runs, then this persistence may assist long term climate prediction. The

physical origin for such persistence might be in the longer term organized

motion of the ocean, where time scales of a thousand years may be expected,

or in the complexities of nonlinear dynamics of both oceans and atmospheres.
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While persistence is a familiar term in meteorology there is no quantita-

tive definition nor any clear cut way of determining the degree of persistence

in an observed or calculated time series. Long runs of similar values of a

parameter describing climate, such as global annual average temperature,

would reveal themselves as energy in the low frequency bands of the power

spectrum. In fact, long meteorological (and other geophysical) records typi-

cally show abundant energy at low frequencies, often described as red noise.

This behavior is illustrated in the cumulative spectrum (see Figure 1) of the

average global temperature calculated from the Lorenz 27-variable model in-

tegrated over 26,000 years (see Section 4). About 90 percent of the variance

lies in the lower 20 percent of the frequency domain. Century long observa-

tional temperature records show similar spectra (see Section 5). A current

GCM with ocean temperatures fixed by seasonal means does not display

observed low frequency behavior nor persistence (see Sections 5.2 and 5.3).

Classical time series statistics are weak in describing low frequency be-

havior, although the two point correlation function is useful in describing

short time correlations. Higher order correlations are required to describe

long term runs, but these quantities are very computationally intensive and

do not lend themselves to easy graphical presentation or interpretation.

Power spectra are notorious for their weakness in representing behavior near

zero frequency. If the mean is removed, the zero value at zero frequency

pulls down estimates of neighboring frequencies due to the "windowing" as-

sociated with the finite length of the record. If the mean is included, the

delta function at zero frequency pulls up nearby estimates. Any linear trend

is usually removed prior to taking the spectrum because the low frequency

contcnt of a trend distorts the estimates of the low frequency part of the

spectrum. Since the number of "cycles" at periods comparable to the record
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Figure 1. Cumulative spectrum for a 30,000 year run of the Lorenz 27-variable model of
climate (see Section 4).



length is small, the statistical reliability of the low frequency estimates is

based on few samples and is therefore low.

The low frequency components in a time series can be accentuated by

filtering. One means of filtering is to integrate or, for equally spaced data,

to form the cumulative sum. If f (w) is the estimate of the power spectrum

at angular frequency w of the observed time series z(t), then f(W)/W2 is the

estimate (except at zero frequency) of the spectrum of the cumulative sum

X(n)
n

X(n) = x(t).
t=l

The summing highlights the low frequency components of x(t) without com-

pletely eliminating high frequency terms, as would be the case for low pass

filtering. In the time domain, long runs of similar values of x(t) will be exhib-

ited as nearly monotonic increases or decreases of X(t), while a series with

less correlation will show a much more ragged wave. As will be shown, a

measure of the irregularity of the cumulative sum X(n) provides a measure

of the persistence within the calculated or observed time series x(t).

In the case where the x(t) are normally distributed and independent,

with vanishing mean and unit variance, the running sum X(n) can be de-

scribed as a classical Brownian process. The increment X(n + k) - X(n) is

a normal variable with mean 0 and variance k which is independent of X(n)

and the values X(m) for m < n since x(t) are by assumption uncorrelated.

In a classical Brownian process, there is no memory of the past. The lack

of memory is a direct result of the independent nature of x(t). Because x(t)

are independent, their index of persistence, denoted by P, and which will

be defined shortly, will vanish. For notational purposes we note that the
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variance of X(n) scales as n 2H where

H= 1/2

for a Brownian process.

At the opposite extreme to a Brownian process with zero persistence

we consider a process in which the increments of x(t) are a constant random

number xi.

z(t) = X1

with E[xl] = 0 and E[x'] = 1. The cumulative sum for this process is simply

X(n) = Xl n

and the variance of X(n) is given by

var [X] = E[x ] n2 = n2

so that the variance scales as n2H where H = 1. For this process persistence

is perfect, since the run length of identical values equals the length of the

record. If, in analogy with the correlation coefficient, we assign P = 1 to

perfect persistence and P = 0 to the absence of persistence, then P is related

to the scale factor H by

P=2H-1; -1 <P<1.

Negative values of P correspond to antipersistence.

Hurst (1951), a hydraulic engineer, first introduced the use of cumula-

tive sums to analyze long hydrological records by considering the storage of

water in reservoirs. The amount of water in a reservoir at any one time is

determined by the cumulative inflow minus the evaporation and draw down.

In a managed reservoir, the inflow fluctuates widely but the draw down is
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more or less constant. Motivated by reservoir considerations, Hurst analyzed

a number of records using a rescaled range (R/S) analysis described in detail

in the following section. Hurst's results were puzzling. Hydrological records

did not scale according to H = 0.5 or P = 0 but showed values of H that

corresponded to positive values of P. For reservoir height, persistence is un-

derstandable, since it depends on rainfall in prior seasons as well as rainfall

in the current year, and therefore the system has memory. Hurst also found

H > 1/2 for long temperature records where the origin of "memory" is not

as clear.

This paper examines persistence in climate and models of climate. In

section 3, we describe the theory of process with stationary increment and in-

troduce the notion of fractional Brownian motion first studied by Kolmogorov

(1940) and later by Levy (1953). Such processes have memory and positive

persistence. A variety of methods to determine P, including R/S analyses,

are employed in Section 4 to determine the persistence of long (26,000 years)

records generated by a low order climate model. The results of applying

these methods to observational records are discussed in Section 5.
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2 RESCALED RANGE (R/S) ANALYSIS
OF INDEPENDENT RANDOM VARI-
ABLES

In order to illustrate RIS analysis we first consider a series where x(t)

are mutually independent random variables with a common distribution func-

tion. For convenience in calculation, the mean of x(t) is set to zero and the

values are normalized such that the variance is unity. We form the cumulative

sums of x(t) in order to bring out the low frequency behavior

n

X(n) = x(t).
t=1

Order statistics are more robust than conventional statistical measures.

To apply order statistics we form the range R(n) by setting

M(n) = max [O,X(1),X(2),...,X(n)]

m(n) = min [O,X(1),X(2),...,X(n)]

and

R(n) = M(n) - m(n).

For ease in interpretation it is useful to modify this definition. Suppose that

the total length of the record is N. Instead of considering the sums X(n),

we consider instead their deviations from a line drawn joining the origin to

the point (N, X(N)). Thus we replace the random variables X(n) by

X*(n) = X(n) - nX(N)/N

and define the corresponding variables R((n), M*(n) and m(n) accordingly.

The random variable R*(n) will be called the adjusted range of the cumula-

tive sum.
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In applications, the adjusted sum is to be preferred because it appears

to have greater sampling stability (it is more robust) and it eliminates a

trend in case that E[x(t)] : 0. Since the sums X(N) are asymptotically

normally distributed, the asymptotic distribution of the range is independent

of the distribution of x(t). Summing not only emphasizes the low frequency

components of x(t) but also ensures a robust quality to the statistics of X(n),

such as the range or the adjusted range.

A straightforward calculation of the range for norma!ly distributed x(t)

leads to

E[R(n)] = 2(2n/hr)1/2

and

var [R(n)] = 4n(ln2 - 2/7r)

(Feller, 1951). The statistics for the adjusted range show the same depen-

dence on the length n over which the sum is taken

E[R(n)] = (n7r/2)1 / 2 , 1.2533 n1 / 2

7-2 r"

var [R*(n) = ( _-2) n -0.07414 n.

The result that the range varies as the square root of the length of

the sum depends critically on the assumption that the variables x(t) are

independent. If this assumption does not hold, then X(n + 1) depends on

X(n) , and since X(n) is determined by the previous n values of x(t), X(n+ 1)

depends on x(t), t = l...n. The cumulative sums provide a measure of past

correlation if the dependence of the range, or the adjusted range, does not

vary as the square root of the summation interval.

The quantity RIS is formed by dividing the adjusted range of X(n)

by S(n), which is the standard deviation of x(n). For stationary Gaussian
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processes, division by S(n) adds little to the analysis; x(t) can always be

normalized to have unit variance. However, for nonstationary processes with

long range dependence, division by S(n) leads to a more stable statistic.

Based on the above considerations, we can apply R/S analysis to test

for correlation in random number generators commonly employed in com-

puter packages. The random numbers were generated according to the algo-

rithm proposed by Park and Miller (1988), which is under consideration for

adoption as a IEEE standard. Figure 2 shows a sequence of 8192 normally

distributed variates supposed to be uncorrelated. The observed distribu-

tion (see Figure 3) closely approximates the normal distribution. Figure 4

illustrates the cumulative sum of the variables in Figure 2 with the ragged

curve typical of a Brownian process. The RIS statistics are obtained by first

calculating the adjusted range R* for the total record of length N = 8192 and

normalizing by the standard deviation of the record of length N. The pro-

cess is repeated for chunks of record of length N/2, N/4, ...N/1024, and the

resulting value of the scaled adjusted range, RIS, is obtained by averaging

over the 2,4, ...1024 non-overlapping intervals. The smallest interval contains

eight points. The concept of range begins to break down at small interval

and chunks smaller than 8 are not used. A plot of the log (RIS) against

log (n), where n ;s the length of the interval over which RIS is estimated,

determines the scaling exponent H in the relation

R/S - nH.

For the series shown in Figure 2 the scaling slope is 0.51 (see Figure 5). For

n = 8192, the difference in adjusted range for slopes 0.5 and 0.51 is 11.8,

while the standard deviation of the estimate of adjusted range is 24.69, so

that the value 0.51 is not statistically distinct from 0.5. For comparison,

a slope of 0.6 would produce an adjusted range more than eight standard

9
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deviations from the expected value for a random independent variable.

We note that while the range for the cumulative sum of the normally

distributed independent variables scales with length of observation as n1/ 2 ,

the range of the elements in the sum x(t) increases far more slowly, essentially

as (log n)1/ 2 (Leadbetter et al., 1980; Abarbanel et al., 1991).

A trend introduces a long term persistence into a record, as would a pure

harmonic, A sin(2rf+ 4). We take the frequency f and amplitude A as fixed

but the phase 0 is taken as random having a uniform distribution. For x(t)

equal to a sine wave, the range of the cumulative sum X(t) in the limit of

large n is A/7rf while the limit of the standard deviation is A/2, so that the

limit of RIS is 2/7ff. The statistic RIS for a pure sine wave does not vary

according to n / 2 , so it shows persistence (actually perfect antipersistence).

The situation differs in the limit of large n when white Gaussian noise

of zero mean and unit variance is added to the process

x(t) = Asin(27rft + 4) + g(t).

The cumulative sum X(n) then satisfies the inequality

G(n) - A/2rf < X(n) < G(n) + A/2rf

where G(n) is the cumulative sum of the noise g(t).

In the limit of large n, the ranges of X(n) and G(n) are identical since

the range of X(n) varies as ni/2 . The variance of the sine wave plus noise in

the limit of large n is

E[S(n)] = 1 + A/2

14



and therefore the statistic R/S has an expected value for large n of

E[R/S] = 2 f( 2n /

The value of R/S, as well as the time required to reach the limit, is

determined by A/2rf. Very low frequency sine waves will lead to persistence

in the presence of uncorrelated noise. Lines in the spectrum at low frequencies

will affect the estimate of RIS, as will a linear trend. High frequencies will

not show up in the RIS statistic.

The existence of long term correlations can have important consequences.

For example, the physical model for Brownian motion is one of a small par-

ticle being bombarded by molecules in thermal equilibrium. The nl/ depen-

dence flows from the assumption that the molecules in thermal equilibrium

have uncorrelated motions. With vanishing correlation the ordinary diffusion

equation applies. Statistical independence at large time and/or space scales

is an essential ingredient of the concept of thermal equilibrium; the exis-

tence of longer term correlations would invalidate the assumption of thermal

equilibrium.
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3 FRACTIONAL BROWNIAN MOTION AND
PERSISTENCE

For the moment we return to the cumulative sum of independent, sta-
n

tionary increments, and form the structure function for X(k), X(k) = Zx(t)
t=1

defined by

D(k) = E[(X(k) - X(O)) 2 j

where by convention we can set X(O) = 0. The structure function for

X(n + m) is

D(n + m) = E[(X(n + m) - X(O))] = E[(X(n + m) -X(m)) 2]

+ E[(X(m) X(0))2].

But we also have

E[(X(n + m) - X(m)) 2] = D(n)

if the increments are stationary and independent and

D(n + m) = D(n) + D(m) for n > 0, m > 0.

The only possible functional form for the structure function is

D(n) = Cn,

identical to the functional form for the variance of the range described in the

previous section.

The spectral density F(w) associated with X(t) is related to the contin-

uous structure function D(r) by

D(T-) = 4 (1 - cos w r) F(,w) d .

17



The spectrum of the independent, random increments is a constant

C

therefore the spectrum of the cumulative sum of independent, random incre-

ments is
_C

F(w) = 2w
2 .

Kolmogorov (1940) generalized the concept of Brownian processes to

consider structure functions of the form

D(r) = Cr.21

with 0 < H < 1. The limits on H come from examining the spectral repre-

sentation of D(T). Since from dimensional considerations

F(w) _, 1/U;2HI

and since 1 - cos wr varies as w2 near zero frequency, the spectral represen-

tation for D(r) exists if 2H + 1 < 3, which fixes the upper limit for H. At

high frequencies, an ultraviolet catastrophe can only be avoided if H > 0.

These limits on H allow the persistence index P = 2H - 1 to run from -1 to

1. Since the spectrum for X can be written as

F(w) - C

=2H+I '

the proportionality constant C1 is related to C in the relation for the structure

function by

C

4 I(1 - cos X) X-2H-Idx

F(2H + 1) sin(2Hr/2)C
2r

18



The power law dependence of the structure function implies that D and

X are self similar. Thus a change in scale in the time variable

n = hn

leads to a scale change in X

X(n) = a(h)X(hn)

For classical Brownian motion we have

a =h
- 1/ 2

or more generally

a -h-H

and correspondingly the variance scales as

var[X(n)] = h2 H var [X(hn)]

The self similar character of the cumulative sums implies that the "box

dimension" of the curve is not unity. The box dimension is determined by

the relation between the number of boxes required to cover the curve and

the dimension of the individual boxes. If the length of the record is N, then

N/hn segments of length hn are needed to cover the time axis. In each

segment the range of the record is R(hn) = hHR(n) and we need a stack

of h MR(n)/ha boxes of height ha to cover the range. The total number of

boxes is then

B(h;a,n) = h HR(n) T , h'_ 2 , hDB

ha hn

where DB is defined as the box dimension. In terms of the parameter H the

box dimension is

DB = 2 - H.

19



The determination of the box dimension for the sequence of random

variable shown in Figure 2 is illustrated in Figure 6. Here the box dimension

DB = 1.48, which yi-1ds an H value of 0.52; this can be compared to the

value of 0.51 obtained by an R/S analysis.

Series with values of the parameter H > 1/2, or P > 0, show persistence;

that is, the process generating the time series has memory. Levy (1953)

demonstrated this by showing that for X(t) generated as a Brownian-like

process, X(t) can be represented as

X (t) = I(t - )22'dW(s)
2

where dW(s) is the increment of an ordinary Brownian process (H = 1/2).

This representation clearly demonstrates the long term memory associated

with a fractional Brownian process.

Persistence of a fractional Brownian process can also be shown by ex-

amining the correlation properties. In particular, the past increments are

correlated with future increments. Given the increment X(0) - X(-n) from

time n to time 0, the probability of having an increment X(n) - X(0) aver-

aged over the distribution of past increments is proportional to

E[(X(0) - X(-n))(X(n) - X(0))].

For convenience we choose the origin so that X(0) = 0. The correlation

function of future increments with past increments is then
C(n) = E[-X(-n)X(n)]

E[X(n)2 ]

where we have normalized with the variance. The above scaling relations

E[(X(n) - X(k) ] - In - k IH lead to

C(n) = 22-1 -1 = 2P - 1.

20
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The correlation of future increments with past increments vanishes for strict

Brownian motion. However, for positive persistence, the correlation is posi-

tive and independent of the time. This implies an increasing trend in the past

will produce an increasing trend in the future. In fact, in time limited sys-

tems, fractional Brownian motion is an approximate model over some range

of time scales but not necessarily for the entire record.

Fractional Brownian motion is illustrated in Figures 7 and 8. In Figure

7, the curve corresponds to a persistence of 0.8. The long runs of r(t) with

the same sign show up clearly as nearly straight climbs or descents in the

cumulative sum X(n). Antipersistence is shown in Figure 8, giving rise to a

highly ragged curve.
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4 ANALYSIS OF LONG-TIME INTEGRA-
TION OF LORENZ 27-VARIABLE MODEL

4.1 Introduction

We use values generated by a Lorenz 27-variable model of the atmo-

sphere to illustrate the analysis described in Sections 2 and 3. Lorenz (1984)

formulated a "low order" model of atmospheric change with a goal of explor-

ing a "moist" atmosphere. A moist atmosphere contains bulk liquid water

and water vapor that can form clouds. A shallow ocean provides water for

evaporation as well as a heat sink or source. Clouds form or dissipate in

response to changes in relative humidity with consequent changes in albedo

and the radiative balance.

In the model, the albedo is proportional to the cloud cover; since freezing

is excluded from the model there are no changes in albedo due to varying

snow and ice cover. The cloud cover is parameterized in terms of the relative

humidity. Locally, the relative humidity drops with higher temperature and

the albedo decreases, leading to more solar radiation to heat the earth. The

cloud-albedo feedback allows for significant swings in local and global average

temperature.

The radiative and thermodynamic processes that characterize a moist

atmosphere introduce complicated nonlinear terms into the governing equa-

tions. In order to limit the computational complexity, Lorenz (1984) intro-

duced a number of simplifying approximations. Lorenz found that for short
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term integrations the model produced results that qualitatively were in rea-

sonable agreement with observed atmospheric behavior and concluded that

the model was suitable for production runs. Abarbanel et al. (1990) and

Abarbanel et al. (1991b) investigated the climate of the Lorenz model by

integrations over several thousand years. We have continued these studies

using a 25,521 year integration with a 1.25 hour time slip and averaging over

the year and over the surface of the model to obtain "global" annual average

temperature. The model does not contain either a seasonal or diurnal cycle.

An important point to note is that the model contains only one long

time constant: the thermal time constant for warming the shallow ocean,

about ten years. The ocean is taken to have ten times the heat capacity of

the atmosphere. Horizontal heat flow in the ocean is not allowed. Thus there

is a permanent equator to pole temperature gradient that undergoes small

fluctuations in response to the poleward transfer of heat by the atmosphere.

The pole to equator thermal gradient forms a large scale coherent structure

with a time scale equal to the length of the recoc'd.

4.2 Statistics of the Lorenz-27 Model

The results of a 25,521 year integration of Lorenz-27 for global annual

average temperature are d;-played in Figure 9. The temperatures have been

scaled to unit variance with a standard deviation of 0.364"K (see Table 1).

The time history of the temperature resembles a white noise process and any

long term trends or persistence are masked by the irregular short term behav-

ior. The histogram for the temperature values is shown in Figure 10. The

temperature values closely approximate a normal distribution. The skew-
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Figure 9. Variation in global annual average temperature for a 25,521 year integration of the
Lorenz 27-variable model. The values are reduced to zero mean and unit variance.
The standard deviation of the raw temperature record is 0.364°K.
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Figure 10. Histogram of the temperature values shown in Figure 9.
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Table 1

Standard Deviation of Global Annual Average
Temperature of Long (25,521 years) Integration

of Lorenz 27-Variable Model

Interval Standard Deviation
(Years) (Degrees K)

1 - 25,521 0.3.64
50001 - 15 000 0.374
15001 - 25000 0.359
40003 -4302 0.270
23401 - 23700 0.321
12374- 12673 0.342
14001 - 14140 0.341

ness coefficient is 0.18, which is not significant. The distribution also closely

approximates a normal distribution in the tails. The range of the tempera-

ture in 'nits of standard deviation is shown in Figure 11 together with the

expected value for a variable drawn from a normal population. The auto-

correlation function for the temperature record is shown in Figures 12 and

13. The correlation shows an exponential decay with a first zero at about

65 years. At longer lags the correlation function shows structure, though the

paucity of samples for long lags raises question about statistical significance.

The power spectrum of Lorenz-27 shows abundant energy at low fre-

quencies (see Figures 14 and 15). The spectrum shows a number of peaks

at periods greater than 100 years. The cumulative spectrum (Figure 1)

establishes that 90 percent of the variance of the record displayed in Fig-

ure 9 is contained at frequencies less than 0.1 cycles per year (cpy). For

periods less than 16 years, the spectrum drops off as f-. 2 (see Figure 16).
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Figure 11. Variation in range of the temperature values shown in Figure 9. The dashed curve
represents the expected value of the range for a normally distributed random
variable. (Abarbanel et al. 1991a)
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Figure 12. The autocorrelation function for the time series shown in Figure 9. The correlation
function obtained by tak~ing the Fourier transform of the power spectrum is shown
in Figure 14.
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Figure 13. Autocorrelation at small tags for the record shown in Figure 9.
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Figure 14. Power spectrum of the record displayed in Figure 9. The frequency is measured in
cycles per year (cpy). The units for the power are (oK) 2/cpy.
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Figure 15. The low frequency portion of the power spectrum shown in Figure 14.
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Figure 16. The high frequency portion of the spectrum given in Figure 14 in a log-log
representation. The best least squares line fit to the spectrum is f 2 1 suggesting that
for time scales of 16 years or less, the record given in Figure 9 can be modeled as
a Brownian motion with independent increments.
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Thus at high frequencies the record resembles a classical Brownian walk

derived from white noise. The behavior deviates greatly from this model at

low frequencies, which contain the bulk of the variance.

4.3 R/S Analyses of Lorenz-27 Model

An R/S analysis of the record shown in Figure 9 yields a persistence

index P = 0.34 for intervals greater than about 20 years (see Figure 17). An

alternative interpretation of the analysis is shown in Figure 18. In this in-

terpretation there are three scales for the variation in temperature. At high

frequencies, periods smaller than 20 years, the variations can be modeled

as classical Brownian motion with independent increments. For periods be-

tween 20 years and 400 years, the record has high persistence, P = 0.64. At

still longer intervals (400 years to 25,000 years), the record shows weak per-

sistence, P = 0.07. Whatever correlation exists at intermediate time scales

is lost at long (> 400 years) time scales.

In terms of the spectrum of the record, in the frequency interval cor-

responding to time intervals between 400 and 20 years, the power spectrum

should drop off as f-P. The observed drop off yields an estimate for P of

0.71 (see Figure 19) as opposed to the estimate of 0.64 derived from the R/S

analyses. The spectral estimate of P depends sensitively on the highest fre-

quency used in obtaining the slope, since at high frequencies the slope of the

spectrum is -2.2 (see Figure 16). Persistence is closely tied to the character

of the spectrum at low frequencies. The higher the fraction of the variance

that is carried by the low frequencies, the more likely that a record will show

persistence. In order to distinguish persistence due to low frequency lines in
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Figure 17. Results of an R/S analysis of the record given in Figure 9. The logarithm of the
scaled range is plotted against the logarithm of the interval over which the rescaled
range was estimated.
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Figure 18. Alternative intepretation ot the R/S analyses of the record shown in Figure 9-
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Figure 19. Log-log plot of the spectrum of the record given in Figure 9. The derived
persistence is 0.71.
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the spectrum from persistence due to a continuous low frequency spectrum

a much longer record would be required (see Section 2).

The Lorenz-27 climate model shows three time intervals with differing

behavior. At high frequencies, the model behaves as an oscillator excited

by white noise. At an intermittent range of frequencies, the variations in

global annual average temperature show partial coherence as measured by

the persistence index. Over these time scales one may be able to make

predictions about average behavior provided the averages are longer than 20

years. At still longer periods (greater than 400 years) partial coherence is

1--e y lost and attempts at prediction might be expected to fail.

4.4 Analysis of Persistence in Short Records

The estimates of persistence discussed in Section 4.3 were based on the

analysis of the entire record. In climate studies good global annual average

temperature are very much limited in length, to about 110 to 140 years,

though there is a simple station record covering some 300 years (Abarbanel

et al. 1991b). Table 2 lists RIS estimates of persistence for shorter intervals

of the record. The higher values of persistence shown for randomly selected

records of length 140 and 300 years are due to persistence for time intervals

of 20 to 400 years. The shorter records do not sample intervals greater than

400 years and thus do not pick up the lack of persistence for intervals longer

than 400 years.
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Table 2

Persistence in Lorenz-27 Model as Estimated
from Intervals of Various Lengths

Persistence
Interval Length (Years) All Intervals 20-400 Years

1 - 25521 25521 0.34 0.64

5001 -15000 10000 0.42 0.74
12374- 12673 300 0.56 -

4003 -4302 300 0.61 -

23401 -23700 300 0.50 -

14001 - 14140 140 0.48 -

4.5 Alternative Methods of Estimating Persistence

The R/S method of estimating persistence appears robust since it de-

pends on use of order statistics (David, 1981; Huber, 1972). Two alternative

methods to R/S statistics are the analysis of the variation of the variance

with length of the interval and the estimation of the box dimension (see

Section 3). In the variance method, the variance of the cumulative sum is

calculated for the whole record and then for successive smaller non overlap-

ping intervals obtained by repeated halving of the length of the intervals.

The dependence of the variance on the length of the interval then determines

P + 1, where P is the persistence index.

Table 3 provides comparison of various estimate of the index of per-

sistence. The RIS estimate and the estimate of the box dimension of the

cumulative sum of the record are close. The estimate obtained by examining

the dependence of the variance on interval length consistently gives a lower
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Table 3

Comparison of Various Methods
of Estimating Persistence

Record RIS Variance Box Dimension

Lorenz 1 - 25521 0.34 0.22 0.31
Lorenz 5001-15000 0.42 0.30 0.44
Random 1-8192 0.02 -0.02 0.01

value of P than that provided by RIS analysis or the box dimensions.

4.6 Comments on Estimating Persistence

The principal requirement for estimating persistence is a long record.

As discussed above, the value of P depends on the length of the record,

particularly if persistence becomes small for intervals longer than some in-

terval. The value of P obtained for short records should be viewed with

caution. The R/S estimate exhibits greater statistical stability than does

the variance estimate.

42



5 PERSISTENCE IN GLOBAL ANNUAL
AVERAGE TEMPERATURE

5.1 Observed Temperature Records

The record of global annual average temperature prepared by Jones et

al. (1986 a,b) and brought up to date by Jones (1988) and Jones and \¥igley

(1990) is shown in Figure 20. The record combines observations taken both

at land stations and ships at sea. The records are fraught with problems

related to the homogeneity of land and marine data, but represent the best

information available. The values earlier than 1890 are undoubtedly less

reliable than those in subsequent years.

The temperature time series in Figure 20 shows a trend with warming

apparent, particularly in the decade of the 1980s. A least squares fit of a

linear trend provides a slope of 0.028*K/year. If the linear trend is removed

the remaining time series has a histogram that approximates a normal dis-

tribution (see Figure 21). The standard deviation for the series including the

trend is 0.17 0 K; with the trend removed, the standard deviation is 0.13 0K.

The variations of the range of temperature with time provide a measure of

the nature of the tails of the distribution. As illustrated in Figure 22, the

observed range approximates the expected value of the range of a normally

distributed random variable.

Figure 23 shows the power spectrum of the global annual average tem-

perature. The power is concentrated at the lower frequencies with 60 percent
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Figure 20. Global annual average surface temperature afterjones et al. (1986 a,b).
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Figure 21. Histogram for the values of temperature shown in Figure 20 with a linear trend
removed. The standard deviation for the record is 0.13°K.
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Figure 22. Variation of the range of temperature time series of Figure 20 from which a linear
trend has been removed. The dashed curve represents the expected value of the
range for a normally distributed random variate with zero mean and unit variance.
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Figure 23. Power spectrum of record shown in Figure 20 after removal of a linear trend.
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Table 4

Estimates of Persistence Obtained for
Global Annual Average Temperature Records

Length Standard Deviation
Record (Years) (OK) Index of Persistence

Hansen and 108 0.22 0.88
Lebedeff (1988)
sami with ;nc ar 108 0.14 0.71

trend removed

Jones et al. (1986b) 134 0.17 0.78
same with linear 134 0.13 0.56

trend removed

Manley (1974) 318 0.68 0.46
same with linear 318 0.61 0.38

trend removed

of the variance frequencies lower than 0.1 cycles per year (see Figure 24). The

fraction of low frequency variance is less than that displayed in the Lorenz

model (90 percent), but the observed record certainly contains uncorrelated

measurement error that may well reduce the fraction of energy due to low

frequency natural variability.

The persistence index obtained from an RIS analysis of the record

shown in Figure 20 is 0.78. If the trend is removed the persistence drops

to 0 56 (see Figure 25). The persistence is comparable to that shown in the

Lorenz model for short intervals (see Table 2). Table 4 gives the value of

the persistence as given by RIS analysis of two other long term temperature

records. Hansen and Lebedeff (1988) reduced temperature observations for
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Figure 24. Cumulative spectrum of the time series given in Figure 20.
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Figure 25. R/S analysis of temperature record given in Figure 20 with a linear trend
removed.
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land stations only to obtain a global annual mean surface temperature. The

Manley (1974) record is pieced together from observations taken at various

stations in Central England and is the longest available instrumented temper-

ature record. All the records show evidence for significant persistence. The

lower persistence fo:" the Manley record is probably due to the much higher

noise lkvel associated with a single station and with primitive observations

during the early part of the record.

5.2 Persistence in a Global Circulation Model (GCM)

Through the efforts of Robert Chervin we had available a 101 year run

of the Community Climate Model-1 (CCM-1), a widely used general circula-

tion model (GCCM). This model contains far greater complexity than does the

Lorenz 27-variable model. Clouds, topography and snow and ice feedback are

all included. The oceans exchange heat and moisture with the atmosphere

but the temperature o', the ocean varies according to the seasonal climato-

logical means. There are no ocean currents and, like the Lorenz model, there

is no horizontal heat transport within the ocean. The resulting global annual

mean for he model is shown in Figure 26. The standard deviation of 0.043'K

is small compared with the observed records and with the Lorenz model (see

Table 4).

The gross statistics of CCM-1 are indicated in Figures 27 and 28.

About the mean, CCM-1 approximates a normally distribited variate but

the observed range is significantly greater than that expected for a normally

distributed variate. The power spectrum for the model results differs dra-

matically from the observed records and the spectra of the Lorenz model
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Figure 26. Global annual average temperature for a 101 year record produced by Community
Climate Model-1. (Chervin, 1991 personal communication).
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Figure 27. Histogram for the temperature values shown in Figure 26.
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variable.
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(see Figures 29 and 30). The CCM-1 results do not show the red spec-

trum characteristic of observed temperature records and exhibited by the

Lorenz model. In part the difference arises from the treatment of the oceans.

The energetics of the ocean determines the "slow" physics. The prescrip-

tion of the boundary condition over the ocean as the climatological mean

ensures that the model reproduces seasonal fluctuations approximately cor-

rectly. The CCM-1 representation does not exhibit longer term and higher

amplitude fluctuations seen in nature. Since the ultimate goal of models is to

"predict" long term changes of climate flowing from anthropogenic composi-

tional changes, the lack of faithful representation of slow changes is a major

deficiency.

The 101-year run of CCM-1 shows a persistence index between 0.1 and

0.2 depending on the method used to estimate persistence. These low values

and the shortness of the record raise questions as to whether the estimated

persistence is statistically significant.

5.3 Concluding Observations

The analysis presented above illustrates the usefulness of having a single

number P, the index of persistence, characterize the long term behavior of

a time series. The existence of a large positive value of P over a range of

time scales indicates that predictability is possible in the sense that runs

or trends are likely to be preserved over these time intervals. Long term

trends such as that due to changing atmospheric composition give rise to

persistence. Sharp lines in the low frequency part of the spectrur also result

in persistence. On short time scales, persistence is due to the existence of
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Figure 29. Power spectrum for the global annual average surface temperature shown in
Figure 26.
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Figure 30. Cumulative spectrum for global annual average temperature obtained for Lorenz-
27 model, the observed temperature (see Figure 21) and the GCM results given in
Figure 26
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large coherent structures in the atmosphere. In the case of climate, large scale

coherent structures in the ocean may give rise to persistence over decades or

longer.

The analysis of observed global annual average temperature records

shows that these records have a strong persistence. While the records are

short., only about a century, the persistence is highly statistically significant.

The analysis of one GCM record of 101 years does not show persistence or

a strong red spectrum and thus differs significantly from the observed global

annual average temperature records. The lack of energy at low frequencies is

most probably due to a failure to deal with the oceans in an adequate way.
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